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Abstract 

Calculating Differentially Expressed Genes (DEGs) from RNA-sequencing requires replicates to estimate gene-wise 
variability, a requirement that is at times financially or physiologically infeasible in clinics. By imposing restrictive 
transcriptome-wide assumptions limiting inferential opportunities of conventional methods (edgeR, NOISeq-sim, 
DESeq, DEGseq), comparing two conditions without replicates (TCWR) has been proposed, but not evaluated. Under 
TCWR conditions (e.g., unaffected tissue vs. tumor), differences of transformed expression of the proposed 
individualized DEG (iDEG) method follow a distribution calculated across a local partition of related transcripts at 
baseline expression; thereafter the probability of each DEG is estimated by empirical Bayes with local false discovery 
rate control using a two-group mixture model. In extensive simulation studies of TCWR methods, iDEG and NOISeq 
are more accurate at 5%<DEGs<20% (precision>90%, recall>75%, false_positive_rate<1%) and 30%<DEGs<40% 
(precision=recall~90%), respectively. The proposed iDEG method borrows localized distribution information from the 
same individual, a strategy that improves accuracy to compare transcriptomes in absence of replicates at low DEGs 
conditions. 
http://www.lussiergroup.org/publications/iDEG 
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Introduction 

Precision medicine aims to deliver “the right treatments, at the right time, to the right person”Kaiser [1]. However, 
clinical research, medicine, and pharmacology need new tools to achieve that goal. The prevailing system of one-size-
fits-all drug development has led to the ten top-grossing USA drugs being ineffective for more than 75% of users2, and 
these patients typically cannot be identified until after therapeutic failure has occurred. The success of precision 
medicine hinges on identifying the precise aberrant mechanisms at play during an individual’s disease course3 to 
optimize treatment based on that individual’s biology.  

Single-subject RNA sequencing (RNA-Seq) analysis considers one patient at a time, with the goal of revealing an 
individual’s altered transcriptomic mechanisms. Relative to traditional cohort-based analyses, a major challenge of 
single-subject RNA-Seq analysis is the estimation of gene expression variance which is required to identify 
differentially expressed genes (DEGs). In cohort-based methods, gene variance is calculated across a heterogenous set 
of samples, and the statistical methods employed leverage and rely on those replicates. However, they also emphasize 
consistent and average responses which may not accurately represent a single patient when the disease is heterogenous 
or stratified. Alternatively, the variance can be assessed between two conditions in one subject and three replicates. Yet, 
obtaining sufficient isogenic replicates for one subject to answer more precision questions poses a major difficulty due 
to (i) limited tissue availability, (ii) the risks associated with invasive tissue-sampling procedures, and (iii) general costs 
and inefficiencies with the current technology. Even though there is a great body of work for identifying DEGs in RNA-
Seq data4-8 and frameworks for N-of-1 studies either for a single analyte or by pooling gene products in pathways9-13, to 
the best of our knowledge, no methods have been designed or validated at the gene level to determine the effect size 
and statistical significance of a single-subject, single RNA-Seq studies in two conditions without replicates (TCWR)14. 
Strategies to implement standard RNA-seq analysis methods for comparing TCWR have been proposed in the 
respective methods’ publications without comprehensive evaluation. Typically, these standard methods, usually 
requiring large cohorts, have been adapted to identify DEGs in TCWR by imposing restrictive transcriptome-wide 
distribution assumptions, thus limiting localized inferential opportunities. 
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Three critical obstacles hinder the analysis of single-subject TCWR studies. These include i) patient-level inferential 
capability in absence of biological replicates, ii) sensitivity to fold-change inflation in low-expression genes, and iii) 
rigid parametric data assumptions for variance estimation. To overcome the current technical limitations in analyzing 
RNA-Seq data, we propose a new method that borrows localized information across different genes from the same 
individual using a partitioned window to strategically bypass the requirement of replicates per condition:  iDEG 
(individualized Differentially Expressed Genes). iDEG applies a localized variance-stabilizing transformation to 
estimate a gene’s distribution that borrows information from genes with similar baseline expression. While variance-
stabilizing transformation has been previously used to identify DEGs across a large number of subjects or replicates, 
our approach differs from these since it has been developed to be applied directly on two paired transcriptomes from a 
single subject by computing the localized dispersion parameters in different windows of genes with similar expression 
at the baseline.  

In this work, we evaluated the performances of iDEG and other four standard approaches applied to single-subject 
TCWR studies (edgeR, NOISeq-sim, DESeq, DEGseq). We also designed simulation studies under several conditions 
to stratify the range of applicability of our proposed strategy, which could eventually complement other RNA-seq 
analyses in TCWR studies. This study demonstrates the utility of variance-stabilizing transformations within subject in 
absence of replicates in two conditions, which is distinct from previous implementations of variance-stabilizing methods 
conducted across replicates or subjects.   

Methods 

The iDEG algorithm: iDEG  

The iDEG algorithm (Figure 1) is an easy-to-implement, single-command function written in R15 with a 
computation speed of one second for identifying a subject’s DEGs on 8GB Ram computer. The subsequent 
sections expand on the main iDEG steps shown in Figure 1.  

Figure 1. The iDEG Algorithm. 1) Normalize unequal library sizes if necessary. 2) Partition transcriptome into 
percentile-based windows using ranked baseline expression. 3) For each window: estimate mean expression, 
variance, and dispersion parameters. 4) Apply the Variance Stabilizing Transformation (VST) for each gene 
expression count. 5) Calculate the standard normal summary statistic “𝑍"” for each gene expression count “g”. 6) 
Determine the identified DEG set “𝒢$” based on a pre-determined α-cutoff. 

Modeling read counts via a re-parameterized Negative Binomial (NB) distribution 

We model read counts 𝑌"&  as following a re-parameterized negative binomial distribution with mean 𝜇"& and dispersion 
𝛿". Thus, 𝑌"&	~	𝑁𝐵-𝜇"&, 𝛿"/ with the following probability mass function, mean, and variance, respectively. Since for 
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any subject, both transcriptomes are sequenced separately, they are treated as conditionally independent, conditional on 
the subject*. 
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; 𝐸-𝑌"&/ = 	𝜇"&,			𝑉𝑎𝑟-𝑌"&/ = 	𝜇"& + 𝛿"𝜇"&L  (Eq.1) 

To identify DEGs from a pair of transcriptomes, we must test multiple hypotheses 𝐻N:	µQE = 	µQL, g = 1, … , G, where 
µ"E and µ"L are the theoretical mean expression levels for each gene “g” in sample 1 and sample 2, respectively. We 
define the DEG set by 𝒢	= {g: µ"E ≠ µ"L, g = 1, … , G} and its set-theoretic complement of non-differentially expressed 
genes, or  “null gene set” by 𝒢′	= {1, … , G}\	𝒢. In presence of replicates, each hypothesis can be tested with a two-
sample comparison, using Welch’s t-test statistic: 𝑡Q = -𝑌UQE − 𝑌UQL//[(𝑆QEL /𝑁QE +	𝑆QLL /𝑁QL)1/2] were 𝑌UQE and  𝑌UQL	, 𝑆QE 
and 𝑆QL, and 𝑁QE and 𝑁QL are each groups’ respective sample mean, standard deviation, and size. However, when there 
is only one observation for Yg1 and one for Yg2, neither 𝑆QEL  nor 𝑆QLL  are computable. We thus propose iDEG: an algorithm 
that transforms Yg1 and Yg2, such that a simple function of the transformation allows for modeling all genes with the 
same distribution. This is done by pooling the genes together and estimating their common variance, hence bypassing 
the single-subject, single-replicate limitation.  

Normalize read counts with unequal library sizes (Figure 1, Panel 1) 

In practice, unequal DNA library sizes may exist; thus, the first step is to normalize library sizes if necessary. We use 
the quantile-adjusted conditional maximum likelihood (qCML) procedure by Robinson and Smyth16, for normalization, 
and subsequently, iDEG is applied. 

Partition genes into windows to estimate local mean and variance (Figure 1, Panel 2)  

Marioni et al. demonstrated the aptness of using expression means to estimate a gene’s variance17. Therefore, by 
extension, in iDEG we assume that genes of comparable expression levels are assumed to behave similarly (genes with 
similar means share similar variances). Thus, after normalization, the next step is to group genes into W non-overlapping 
windows of similar expression levels to approximate each window’s local mean and variance parameters. In the re-
parameterized NB distribution, the variance of a given gene, g, is a function of its mean, 𝜇g, and dispersion, 𝛿g. Thus, 
the genes are partitioned to obtain their local, window-specific parameters. We define the 𝑤\] window by the (𝑤 − 1)\] 
and (𝑤)\]  percentiles, for w=1,…,W.𝒢^ = _𝑔: (𝑤 − 1)\]	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒	𝑜𝑓	𝑌QE < 	𝑌QE < 	𝑤\]	𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒	𝑜𝑓	𝑌QEj . To 
provide robust parameter estimates, we recommend a large positive integer, W, so that each window contains between 
150 and 200 genes. However, the final predictions are not overtly sensitive to the choice of W (< 10% difference, data 
not shown – available upon request).  

Compute each window’s parameters (Figure 1, Panel 3)  

As seen in (Eq. 1), 𝑉𝑎𝑟-𝑌"&/ = 	𝜇"& + 𝛿"𝜇"&L .	 Therefore, when estimating variance locally, we are actually estimating 
the dispersion parameter 𝛿" for each gene count. This local estimation provides a more numerically fair evaluation of 
genes as it allows for comparisons relative to their mean expression counts. Particularly, it enables a better estimation 
of  dispersion and variance parameters for genes with extremely high or low expression counts, since these genes are 
grouped together into windows, and share window-level parameter estimates in order to over-inflate or deflate their 
variability by averaging it out across the entire transcriptome. This is done in effort to mitigate challenges with making 
DEG calls in lowly and highly expressed genes. This value is required for the variance-stabilizing transformation (VST) 
h calculation (Eq. 3; Figure 1 Panel 4). However, variance cannot be estimated when only a single observation is 
available. For RNA-Seq data analysis, one common assumption is that the dispersion 𝛿g is equal across samples 1 and 
2, and that dispersion is a function q of the mean, µ"18-20. Thus, in the absence of replicates, we partition genes into small 
windows to estimate the functional mean-dispersion relationship, 𝛿g =	q(𝜇g), and hence the variance. We propose a 
two-step nonparametric procedure to obtain: (i) an initial estimate of 𝛿g by pooling genes locally; and (ii) a refined 
estimate of 𝛿 g by estimating q(𝜇 g) with a smooth curve-fitting technique. In this approach, all non-differentially 

                                                        
* A note on notation, since iDEG models each patient’s paired transcriptome individually, the subscripts for each 

subject are omitted since only a subject is handled at a time in any given calculation.   
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expressed (null) genes belonging to the same window 𝒢l  roughly have the same mean 𝜇l∗  and the dispersion value 𝛿l∗ . 
Thus, 𝑌"&~𝑁𝐵 ∗ (𝜇^∗ , 𝛿^∗ )		∀𝑔 ∈ 𝒢^, 𝑑 = 1,2	where 𝜇^∗  and 𝛿^∗  are the window-specific mean and dispersion values 
for null genes in 𝒢^, while d specifies if the count comes from sample 1 or 2.   

The initial window estimates µ^∗ 	 and σlL∗	  as  𝜇̂^∗ 	= 𝑀𝑒𝑑𝑖𝑎𝑛	-𝑌"E/			∀𝑔 ∈ 𝒢^	  and 	𝜎v^∗ = 𝑀𝑒𝑑𝑖𝑎𝑛-2𝑌"E −
	𝑀𝑒𝑑𝑖𝑎𝑛-𝑌"E/2/		∀𝑔 ∈ 𝒢^ , respectively. Since 𝑉𝑎𝑟-𝑌"&/ = 𝜎"&L = 𝜇"& + 𝛿"𝜇"&L , we estimate 𝛿^∗  with 𝛿$^∗ = (σlL∗	 −
𝜇̂^∗ )/	𝜇̂^L∗	, for all windows 𝑤 = 1,⋯ ,𝑊. To further improve the estimate of the dispersion parameter, 𝛿", a smoothing 
spline technique is used to fit a functional mean-dispersion relationship, 𝛿" =	q(µ" ), by solving the following 
optimization problem: 

	𝑞vz = 	min
																~∈𝒬

∑ {𝛿$^∗ − 𝑞-𝜇v∗^)j
L�

^�E + 𝜆 ∫[𝑞��(𝑡)]L 𝑑𝑡																		(Eq. 2) 

where 𝒬 is the second-order Sobolev space on [0, 1] containing 𝑞, and λ is a smoothing parameter (selected via 
generalized cross validation)21. After the fitted curve	𝑞vz	 is obtained as in Eq. 2, the refined estimate of 𝛿$" is computed 
as 𝛿$" = 𝑞vz(	𝜇̂^∗ ), ∀𝑔 ∈ 𝒢^, 𝑤 = 1,⋯ ,𝑊.		 Figure 2 illustrates the functional mean-dispersion relationship and 
calculation.  

 
Figure 2. Localized, window-specific dispersion estimates as a function of log (mean expression). iDEG partitions the 
transcriptome into W equal-sized genomic windows of similar expression size and then calculates the over dispersion 
parameter relative to the gene’s mean expression. The number of windows W is a parameter in the iDEG function-call 
and should be empirically calculated relative to the transcriptome size. After conducting a few numerical studies, we 
recommend setting W=100 in order to allow for over dispersion estimates of highly and lowly expressed genes to be 
representative of their groups.   

Summarizing, we get: 

a) Initial Estimate of dispersion  𝑉𝑎𝑟-𝑌"&/ = 𝜎"&L = 𝜇"& + 𝛿"𝜇"&L 		⇒ 		 𝛿$^∗ = (σlL∗	 − 𝜇̂^∗ )/	𝜇̂^L∗ 

 

b) Refined estimate of dispersion 
	𝑞vz = 	min
																~∈𝒬

�{𝛿$^∗ − 𝑞-𝜇v∗^)j
L

�

^�E

+ 𝜆�[𝑞��(𝑡)]L 𝑑𝑡 ⇒ 𝛿$" = 𝑞vz(	𝜇̂^∗ ) 
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These equations come from the fact that in the negative binomial, variance (equation a) is a function of both mean and 
dispersion. So, the above equation (a) is rewritten version of the typical variance equation, with the stars and hat 
superscripts denote that it is now an estimate of the theoretical values for each partitioned window, w. As shown in (b), 
once window-level parameters are estimated (e.g., 𝜇̂^∗ ), then a window-level dispersion parameter is estimated for all 
genes in that window (e.g., 𝛿$" = 𝑞vz(	𝜇̂^∗ ) ∀𝑔 ∈ 𝒢^), by fitting refined, functional estimate of dispersion.  

Apply the Variance Stabilizing Transformation (𝒉(𝒀𝒈𝒅)) to each gene (Figure 1, Panel 4) 

After fitting 𝛿", we apply the variance stabilizing transformation h to the counts, 𝑌"&	∀𝑔 ∈ 𝒢^:  

ℎ-𝑌"&/ =
E

�C:
sinh7E �𝑌"&𝛿" + B	�

E
C:
− 1Fsinh7E �

�:>?
�
�

8
9:
7��

  , ∀𝑔 ∈ 𝒢^  (Eq. 3)  

This transformation22 of the expression 𝑌"&  in each window w,  results in  an approximately constant variance 
across all windows of the transcriptome (Figure 3), regardless of the expression mean,	µ"&. That is h(𝑌"&) 
~	̇ 𝑁(ℎ(µ"&), 1), where d specifies if the count comes from sample 1 or 2. Therefore, the difference of the two 
independent normal random variables (e.g., ℎ-𝑌"E/ − ℎ(𝑌"L) ) approximately follows a common normal 
distribution with mean 0 and a constant variance: 𝑍" = (1/√2)�	ℎ-𝑌"E/ − ℎ-𝑌"L/�~	𝑁(0,1) . We suggest 
replacing √2 by a robust estimate of standard deviation (e.g., median absolute deviation)23.      In most single-
subject analyses, the estimated dispersion parameter, δ�Q, is small, but when δ�Q ≥ 2/3, the VST ℎ(𝑌"&)	 is not 
numerically stable. To avoid this issue, we suggest replacing ℎ  with ℎ∗	 24, where ℎ∗-𝑌"&/ = (1/
�𝛿") sinh7E �𝑌"&𝛿", 					𝑔 = 1,⋯ , 𝐺; 				𝑑 = 1,2. If a negative value of 𝛿$N is obtained, we conservatively set it to 
zero to assume a larger variance. 

 
Figure 3. Variance Stabilizing Transformation (VST). Panel A depicts the raw difference 𝐷" = 𝑌"E − 𝑌"L	for 
20,000 simulated genes (Methods Simulations), suggesting that the variance of DQ  increases as the mean µQE 
increases; hence, there is no uniform cutoff to differentiate DEGs and null genes. Panel B illustrates that, for null 
genes, VST makes the variance of 𝐷"∗ = ℎ(𝑌"E) 	− 	ℎ(𝑌"L) constant regardless of mean	𝜇"E. 

Compute the summary statistic for each gene (Figure 1, Panel 5) 
In the context of noisy data and large-scale inference, performing individual tests neglects the parallel structure 
of RNA-Seq data. Moreover, actual data mean and variance may not be close to their theoretical values of 0 and 
1 due to various reasons (e.g., correlation across genes, correlation between samples, or failed mathematical 
assumptions)25. Therefore, we estimate an empirical null distribution 𝑁(µN, 𝜎N)	to test these individual hypotheses. 

Since differentially and non-differentially expressed genes generally follow different distributions, the probability 
density function of 𝑍", 𝑓(𝑧),	is naturally modeled by a two-group mixture: 𝑓(𝑧) = 𝜋N𝑓N(𝑧) +	𝜋E𝑓E(𝑧). Here, 𝑓N 
and 𝑓E are the probability density functions of genes in 𝒢′	and in 𝒢, while 𝜋N  and 𝜋E = 1	–	𝜋N are their respective 
membership proportions. We assume a normal distribution following previous work from Dean and Raftery26 that 
applied a two-group mixture model to identify differentially expressed genes, assuming a normal distribution for 
the null genes and a uniform distribution for the DEGs. However, we relax their assumptions for the marginal 
distribution and assume an exponential family. We approximate 𝑓(𝑧) using a smooth K-parameter exponential 
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family distribution, 𝑓(𝑧) = exp	{∑ 𝛽¬𝑧¬­
¬�N }, and estimate the parameters (𝛽N , 𝛽E , · · ·, 𝛽­)¯  using Efron’s 

approach27. 

Estimate the local false discovery (locfdr) for each and identify DEGs (Figure 1, Panel 6)  
Finally, to control the false discovery rate (fdr), we adopt Efron’s idea28-30 to estimate the local fdr (locfdr) using 
the R package locfdr and estimate 𝜋N, 𝑓N(𝑧) by maximum likelihood. Efron et al.31 have shown locfdr’s close 
connection to the BH false discovery rate procedure32; therefore, after estimating locfdr(zg), it identifies 
differentially expressed genes by comparing locfdr(zg) to a pre-specified α-cutoff value. The final set of 
differentially expressed genes identified by applying the iDEG procedure is denoted by 𝒢$. 

Simulations (Figure 4)  

To compare the performance of iDEG to existing methods – including edgeR16, DEGSeq8, DESeq19, and NOISeq6 
– extensive numerical studies were conducted assuming that RNA-Seq data follow the NB distribution with a varying 
dispersion parameter 𝛿".  Of note, these methods assume the NB distribution for data, which is used in the simulation; 
except for NOISeq that is nonparametric and DEGseq which assumes a binomial distribution. Baseline (normal tissue) 
and case (tumor sample) transcriptomes are both simulated and assumed to contain G = 20,000 genes; the library size 
of one transcriptome is 1.5 times larger than the other one. The single-subject RNA-Seq datasets are simulated with 
different percentages of DEGs, including DEG percentage = 5%, 10%, 15%, 20%, 25%, 30%, 35%, and 40%, and also 
with different window sizes W =10, 100, and 1000 (data not shown for window-level experiments). Each experiment 
is repeated 1000 times, across each of these simulation conditions. 𝑌"E ~ NB(µ"E, 𝛿") and 𝑌"L ~ NB(µ"L, 𝛿"), where 
𝜇"Efollow a discrete uniform over the range B = {5, 6, …, 10,000}, and the dispersion parameter 𝛿" has been set to 𝛿" 
= 0.005 + 9/(µ"E + 100), per Anders and Huber19. Probabilities for gene expression means, µ"E, are sampled from: 
𝑃-𝜇"E/ = (1/500)𝑒7(E/±NN)×	³:8,						𝑔 = 1,⋯ , 20000. For the case transcriptome, we set µ"L= µ"E  for 𝑔 ∈ 	𝒢� and 
𝜇"L = 𝑑´𝜇"E for 𝑔 ∈ 𝒢, where 𝑠	 = 	 (−1)¶	and b ~ Bernoulli(0.5) is a random variable, and 𝑑 = (𝜇"E + 𝑘	�𝜇"E)/𝜇"E, 
k ~ Normal (4,1). Here, s indicates increasing expression (s = 1) or decreasing expression (s = −1) of a gene in the case 
transcriptome relative to baseline. Finally, for each gene g, we simulate one observation for 𝑌"E and 𝑌"L respectively 
and test the hypothesis µ"E = µ"L. At each iteration, a baseline and a case transcriptome are generated to simulate a 
distinct RNA-Seq dataset. Methods are assessed by their Precision, Recall, and FPR, and 𝐹E  score,  𝐹E = (2 ⋅
(precision ∗ recall)/(precision+ recall). The average number of identified DEGs is also reported. Of note, we 
excluded from the comparison GFOLD, a standard approach that can be applied to TCWR studies, as it only ranks 
genes without providing a measure of significance, thus prohibiting the accurate comparison with the remaining 
techniques using precision-recall curves or ROC curves.  

Results 

Figure 4 depicts the accuracies obtained in the simulations while Table 1 contextualizes each method’s performance 
relative to the number of DEG calls and the number (and %) of genes seeded as DEGs.  Of note, we have also conducted 
complementary analyses with a Poisson distribution and showed similar ordering of accuracies between the evaluated 
methods (data not shown). For windows size of 10, 100, and 1000 the accuracies of the simulations remained consistent 
(data not shown) and opted for setting W = 100 to balance computation time and parameter estimation robustness.  As 
seen in Table 1, NOISeq-sim, edgeR, DEGseq attain a high precision ( defined as > 90% precision) across all simulation 
conditions (5% through 40% DEGs seeded) at the expense of lower recall and a large number of false positives. For 
example, as seen in Table 1, 5% DEGs, NOISeq-sim, edgeR, and DEGseq all result in a larger of false positives than 
there are actual seeded genes. Conversely, iDEG attains a high precision (defined as >90%) at the expense of making a 
smaller number of DEG calls, thus attaining lower recall. The F1 score shown in Fig 4-C is the harmonic mean of the 
Precision and Recall metrics, aggregating the precision-recall trade-offs made by individual techniques into a single 
technique. Although iDEG never attains as high a recall as DEGseq, edgeR, and NOISeq-sim, it better balances its 
precision-recall trade-off into a higher overall F1 score at FDRs<20%, while NOISeq does better at FDR>30%, and the 
two methods show similar F1 scores at 20%<FDR<30%. Of note, DESeq failed to make any DEG calls across the 
majority of the simulation conditions (since it either produced “0” or “1” fdr-adjusted probability predictions), 
preventing us from evaluating their performance at any reasonable false discovery cutoff. 

 

587



 
 

 

 

7 

 
Figure 4. Performance results. NOISeq-sim’s and iDEG’s F1-scores are more accurate than that of other methods at 
5%<DEGs<20% (iDEG) and 30%<DEGs<40% (NOISeq-sim). At DEG=5% and FDR<10%, iDEG provides an 
interesting compromise between precision and recall, while NOISeq provides a better compromise when the percentage 
of DEGs is higher than 30%. Panels A & B. Precision recall curve at 10% FDR for 1,000 and 8,000 seeded DEGs 
among 20,000 transcripts, respectively. Panel C. FE  scores. Average FE  scores resulting from 1,000 repeated 
experiments with vertical bars representing one standard deviation. 

Discussion  

No single method has emerged as the optimal approach for all conditions. Low expression levels are extremely 
susceptible to unstable fold-change estimation, as a 5-fold increase from 2 to 10 counts on a dynamic range of 0 to 
100,000 should not be treated equivalently to that between 10,000 and 50,000. Standard practice filters out genes with 
counts below a certain threshold (typically 5 or 10). However, this solution does not address fold change (FC) inflation 
above the threshold (e.g., FC>2 at 15 counts), nor how to compare distinct FCs at different expression levels. 
Alternatively, favoring absolute count difference to identify DEGs leads to a systemic bias towards genes with high 
expression. Conversely, favoring FC results in a systemic bias towards lowly expressed genes. Either of these solutions 
yields higher false positive rates. For DEGs<30%, the variance stabilization within partitioned windows proposed in 
iDEG is shown to address this dilemma of dealing with fold change inflation by comparing FC values relative to their 
expression levels, perhaps because conventional approaches impose stringent data assumptions that may compromise 
downstream inferential processes.  
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Table 1. Performance results of TCWR simulations. At different percentage of DEGs in TCWR simulations, distinct 
methods obtain the best precision and recall, with iDEG, NOISeq and edgeR producing the best combinations of 
precision and recall. Of note, edgeR, DEGseq, and DESeq were not designed nor validated for studies without replicates; 
however, their authors proposed to utilize them in these conditions by defining specific parameters. NOISeq-sim offers 
high recall and precision with DEGs=40%  i.e. when 8,000 genes are dysregulated among 20,000. On the other hand, 
iDEG obtains high precision with moderate to high recall in all conditions. EdgeR provides moderate precision with 
very high recall for DEGs>20%.  

Proportions of DEGs seeded Method Precision Recall (TPR) FP Predicted DEGs  

1,000 out of 20,000 
(5% of genes) 

iDEG 0.93   0.65     57 700 
edgeR 0.31  0.96    2,090 3,119 
NOISeq-sim 0.412 0.89 1140 2,163 
DESeq 1.0         0.16  0 162 
DEGseq 0.086  0.99    10,450 11,397 

4,000 out of 20,000 
(20% of genes) 

iDEG 0.97    0.76  112 3,136 
edgeR 0.60    0.97    2,560 6,405 
NOISeq-sim 0.747 0.91 1120 4,897 
DESeq Not applicable    0        0 0 
DEGseq 0.3      0.99   9,280 13,160 

8,000 out of 20,000 
(40% of genes) 

iDEG 0.98 0.80    120 6,484 
edgeR 0.77 0.97   2,400 10,145 
NOISeq-sim 0.893 0.91 840 8,177 
DESeq Not applicable   0  0 0 
DEGseq 0.51   0.99    7,560 15,455 

As we proceeded to validating iDEG in biologic or clinical datasets, a review of literature identified few candidate 
datasets that comprised targeted mutations over an isogenic background and yield high DEG rates (e.g., DEGs>50%) 
that did not reflect rates expected in clinical care. In addition, the state of the art in generating reference standard 
consisted in comparing one method against itself as the overlap of DEGs across conventional methods was low in spite 
of 30 replicates in isogenic conditions. Because of these two considerations, we decided to publish the results of a 
comprehensive improvement in reference standard generation as a companion paper 33. We have thus generated multiple 
distinct reference standards (one per conventional method) and developed a “fair” evaluation of methods to identify 
DEGs in paired conditions without replicates using biological datasets (each method is compared to all other methods 
but not itself)33. This companion biological paper33 is limited to datasets with high DEGs as no reference datasets were 
available for low DEGs conditions, while the current simulation explores both low and moderate DEGs levels. We will 
extend window-level approximations for all techniques considered in our companion paper 33 in future studies.  

We note several limitations to the current study.  First, conventional techniques were not explicitly designed for absence 
of replicates and are tested in those conditions. In addition, each method assumes some distribution (DEGseq assumes 
a binomial distribution; iDEG, edgeR, and DESeq assume a Negative Binomial distribution; and NOISeq is non-
parametric). Since the distributional form in real-data is never truly known (only approximated), simulating a 
transcriptome necessarily entails distributional assumptions in every simulation study, which limits its generalizability 
to real studies and inherently may favor some methods over the others. In cases where biological replicates exist, the 
existing conventional methods are better powered and more appropriate for inference as their assumed distributions and 
parameters can be estimated. In cases where biological replicates are unfeasible, the assumptions of these conventional 
methods are violated, and their performance is not guaranteed. In some cases, some DEG detection techniques actually 
cannot produce a DEG call in TCWR. This limits the number of techniques available for comparison in our simulation 
study. Moreover, as seen with DESeq, DEG techniques designed for replicated studies are not necessarily fully 
operational or effective in TCWR, therefore it is not necessarily recommended to pick an arbitrary DEG technique and 
use it in non-replicated TCWR studies. We conducted the simulations against these methods to illustrate the need for 
new approaches to study single-subject transcripts in TCWR conditions. In addition, a true gold standard to evaluate 
iDEG and other methods is not as simple as obtaining replicates and running conventional methods as pointed out by 
recent papers34, 35.  
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Conclusion 

Over the past decade, state-of-the-art techniques in RNA-Seq data analysis have delivered powerful new tools14 for 
extending large-scale inference to small-sample settings. The primary goal of iDEG is not to replace these, but rather 
to expand the scope of RNA-Seq studies into the single-subject, single-replicate realm and provide novel research 
opportunities and test methods for controlling fold change inflation at low expression ranges. In iDEG, we have shown 
the novelty of window partitioning to borrow localized distribution information across genes, and its improved accuracy 
over alternate methods in low DEG conditions (DEG<20%). Furthermore, this approach could potentially be applied to 
improve the accuracy of existing parametric and non-parametric differential expression tools. In future studies, we 
envision to i) extend the window partitioning component of iDEG into other techniques, ii) to locally identify 
differentially expressed pathways (by incorporating ontologies and knowledge graphs), and iv) to apply it to other 
’omics measures, (e.g., metabolomics, proteomics, etc.). 
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